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Macroscopically frustrated Ising model
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A disordered spin-glass model in which both static and dynamical properties depend on macroscopic mag-
netizations is presented. These magnetizations interact via random couplings and, therefore, the typical
quenched realization of the system exhibits a macroscopic frustration. The model is solved by using a revisited
replica approach, and the broken symmetry solution turns out to coincide with the symmetric solution. Some
dynamical aspects of the model are also discussed, showing how it could be a useful tool for describing some
properties of real systems such as, for example, natural ecosystems or human social systems.
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I. INTRODUCTION

Macroscopic frustration can be found in different d
mains, from interpersonal relationships to granular matte
natural ecosystems. All these systems are characterize
frustrated components with a thermodynamically mac
scopic size. In other words, in all these systems, there
components whose size is comparable with that of the wh
system and that cause the action of opposite forces. The
sical example is the case of a manA who desires to spend
some time with a dear friendB, who, unfortunately, wants to
bring his wifeC, who is really detested byA.

Dozens of examples can be found in nature. Consider
antlers of a deer. It is known that they represents a frustra
phenotype. In fact, sexual selection tends to prefer th
growth in order to increase the chance of reproduction,
antlers are an obstacle in some situations, such as wi
predator pursuit in a forest, and, therefore, natural-selec
pressure is for their reduction.

From a stricter physical point of view, systems that e
hibit frustration are very common~see @1# for a general
view!. For a disordered spin system, Toulouse@2# has intro-
duced the definition of frustration for an elementa
plaquette of bonds, consisting in the product of the cor
sponding couplings. Nevertheless, systems in which frus
tion appears on macroscopic scales are less ordinary
have not yet been investigated, as far as we know.

In this paper, we present a spin-glass model in wh
spins are organized in macroscopic sets, with the corresp
ing macroscopic magnetizations interacting via random c
plings. For a typical random realization of the couplings,
system is an ensemble of interacting frustrated macrosc
entities and, therefore, it could be a natural candidate for
mathematical modeling of phenomena in which macrosco
frustration plays a central role.

Let us briefly sum up the contents of the paper.
In Sec. II, the model is introduced. The model becom

self-averaging when the number of components is large, n
ertheless some considerations about its finite-size version
also noted.

In Sec. III, we look for a solution of the model using
revisited version of the replica trick. This revised versi
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could be applied in a more general context to a large clas
models, as will be explained.

In Sec. IV and Sec. V, respectively, the replica symme
solution and the broken symmetry solution in the manner
Parisi are derived in detail. The two solutions turn out
coincide, thus negating the benefits that the Parisi ansatz
in other spin-glass models.

In Sec. VI, the symmetric solutions is studied in det
from a numerical point of view showing that, at varian
with the Sherrrington-Kirkpatrick~SK! model, it keeps its
physical meaning even at very low temperature.

In Sec. VII, some final remarks are made. In particul
some dynamical aspects are illustrated. Dynamics could
profitable argument for future investigations, especially
its possible applications to ecosystems and natural-selec
modeling.

II. THE MODEL

Let us consider a Hamiltonian whereN spins are divided
in L sets, each set consisting of exactlyM5N/L spins. Each
spin interacts with all other spins, but the coupling does
depend on the sites of the spins, but only on the sets of
spins involved. In other words, two spins of different se
interact via a coupling that depends only on the coordina
of the two sets of membership. Then, we can speak of c
pling between sets rather than between spins. We also
sume that spins of the same set do not interact.

This Hamiltonian can be written as

HM ,L~J,s!52
1

MAL
(
k. l

Jk,lsks l , ~1!

where J is an N3N symmetric matrix, consisting ofL2

blocks ofM2 entries each,M being the linear size of a block
All the M2 entries of a given block take the same value a
in particular, the diagonal blocks consist of null entries. T
free energy of the system is

f M ,L~J!52
1

bML
ln(

$s%
exp@2bHM ,L~J,s!#, ~2!

where the sum is intended over all the spin configuration
©2001 The American Physical Society09-1
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The thermodynamic limitN→` can be obtained in two
different ways sinceN is the product of two variables (N
5LM ). In fact, the limit L→` would mean considering a
system whose properties and characteristics are the sam
those of the SK model@3#. On the contrary, the limitM
→` leads to a mean-field model with a macroscopic frus
tion. The self-average properties are obtained by also
forming the limitL→` after the limitM→`. Nevertheless,
non-self-averaging macroscopic frustration is also exhib
for finite L, as we will show later with an example.

We thus perform the limitM→`, keepingL finite. After
some algebra, the free energy reads

f L~J!52
1

bL
max

m
G~J,m!,

wherem5(m1 , . . . ,mL), having defined thei th set magne-
tization mi as

mi5 lim
M→`

1

M (
kP i th set

sk ,

and where

G~J,m!5
b

AL
(
i . j

Ji , jmimj1(
i

F~mi !. ~3!

The indicesi and j run over the spin sets, andJ is now a
symmetricL3L matrix, obtained from the matrix in Eq.~1!
substituting each block with a single entry,Ji , j being the
value of the coupling connecting a spin of seti with a spin of
set j, with Ji ,i50; i . Furthermore,F(mi) represents the en
tropic term of spin seti,

F~mi !52
11mi

2
ln

11mi

2
2

12mi

2
ln

12mi

2
.

Let us suppose that the nondiagonal elements ofJ are
independent, identically distributed random quenched v
ables. For the sake of simplicity, we restrict ourselves
considering normal Gaussian variables with vanishing av
age and unitary variance. Our aim is to compute
quenched free energy

f 5 lim
L→`

f L~J!52 lim
L→`

1

bL
max

m
G~J,m!, ~4!

where the last equality is due to the self-averaging prop
of the free energy, which holds in the large-L limit. The max
in Eq. ~4! is reached form* 5(m1* , . . . ,mL* ), which obeys
the following L self-consistent equations:

mi* 5tanhF b

AL
(

j
Ji , jmj* G , 1< i<L. ~5!

We consider the large-L limit, because we have in mind
system with many macroscopic frustrated components, n
ertheless the glassy characteristics~except self-averaging!
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can also be found for finiteL. Consider, for instance,L53
with the product of the three couplings with a negative sig
At low temperature~below transition, not vanishing!, the
system is degenerated since it has six different pure st
with the same free energy and with nontrivial and not
equal values of the three magnetizations involved.

WhenL increases, frustration increases, as does the n
ber of pure states corresponding to the same free energy
hope to find in this way an interesting spin-glass model w
new peculiarities.

III. REPLICA TRICK REVISITED

In order to perform the limitL→`, we need to compute
maxmG(J,m). We will accomplish this task by means of th
replica trick with a slight but crucial variant. Let us stre
from the beginning that this way of applying the replica tri
is not restricted to our model, but it is more general and
principle, could be of some help in solving many other mo
els with macroscopic variables. In fact, what we propo
here is a useful technique for computing quantities of
type maxmG(J,m), i.e., an average whose argument is
maximum over an expression that depends on random v
ables~J! and on variables to be maximized (m).

It is easy to check that

max
m

G~J,m!5 lim
m→`

lim
n→0

1

mn
lnF E dm exp„mG~J,m!…Gn

,

~6!

wheredm5) idmi . In fact, after having performed the limi
n→0 as in ordinary replica trick on the right-hand side
Eq. ~6!, the saddle-point method allows us to compute
limit m→`, giving equality~6!. The variablem here is only
an auxiliary one.

Making explicit then replicas, the average on the righ
hand side of Eq.~6! can be written as

F E dm exp„mG~J,m!…Gn

5E )
a

dmaexpGn~m,m1, . . . ,mn!,

having defined

Gn~m,m1, . . . ,mn![ ln exp(
a

mG~J,ma!,

where the indexa runs over then replicas. Finally, this leads
to the following expression for the free energyf:

f 52 lim
L→`

lim
m→`

lim
n→0

1

bLmn

3 lnE )
a

dmaexpGn~m,m1, . . . ,mn!. ~7!
9-2
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In our case, keeping in mind Eq.~3!, we can give an
explicit expression forGn . For the sake of simplicity, we do
not write in the following the argument ofGn . After have
taking the averages over the GaussianJ variables, and after
some algebra, one has

Gn5
m2b2

4L (
a,a8

S (
i

mi
ami

a8D 2

1m(
i ,a

F~mi
a!,

wherea anda8 run over the replicas, and where terms n
diverging withL have been neglected since they would d
appear in the successive limitL→`. By means of the para
bolic maximum trick, the above expression can be rewrit
as

Gn5 max
$qa,a8%

Fm2b2

2 (
a,a8

S qa,a8(
i

mi
ami

a82
L

2
qa,a8

2 D
1m(

i ,a
F~mi

a!G ,

where $qa,a8% is an n3n matrix, which represents from
physical point of view the overlap between replicas in sp
glass theory.

Now the integral in Eq.~7! can be fully factorized among
the different spin sets, individuated by the indexi. This fact
allows us to perform the limitL→`, which gives the final
expression for the free energy in the replica context:

f 52 max
$qa,a8%

lim
m→`

lim
n→0

1

bmn
lnE )

a
dmaexpG̃n ~8!

with

G̃n5
m2b2

2 (
a,a8

S qa,a8m
ama82

1

2
qa,a8

2 D1m(
a

F~ma!,

where nowm1, . . . ,mn aren replicas of a scalar magnetiza
tion. Notice that interchange of the position between
max$qa,a8%

and the integration is allowed since in the limitL

→` this maximum corresponds to a saddle-point appro
mation of an integration with respect to the same variab
$qa,a8%.

IV. REPLICA SYMMETRIC SOLUTION

In order to find a solution, i.e., to compute the quench
free energy~8!, we start by trying the usual symmetry un
broken strategy. Let us stress that the diagonal terms of
trix q are relevant for this model, at variance with the c
ebrated replica solution of the SK model@3#. Therefore, in
spite of assuming that the diagonal terms vanish as in
symmetry-unbroken solution of SK, we assume

qa,a85q1
x

bm
da,a8 ,

whereda,a8 is the Kronecker delta. Notice that elements
the diagonal differ only for a quantity of the order ofm21
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from the other entries, otherwise one would have diverg
terms in the limitm→`. This fact implies that overlap turn
out to be a constant only once the limitm→` has been
performed. With this choice, one gets

G̃n5Fm2b2

2
qS (

a
maD 2

1
mbx

2 (
a

@~ma!22q#G
1m(

a
F~ma!,

where terms that vanish in the two limitsn→0 andm→`
have been neglected. By means of the standard Gaus
trick, we have

expFm2b2

2
qS (

a
maD 2G5K expS mbvAq(

a
maD L , ~9!

where the averagê& is on an independent normal Gaussi
variablev. The above equality allows for writing

expG̃n5K)
a

expS mbvAqma1
mbx

2
@~ma!22q#

1mF~ma! D L .

Notice that the argument inside the^& average in the pre-
ceding expression is fully factorized among then replicas.
For this reason, the integral in Eq.~8! becomes thenth power
of a single integral, and therefore the limitn→0 can be
performed:

f 52max
q,x

lim
m→`

1

mb K lnE dmexpFmbvAqm1
mbx

2
~m22q!

1mF~m!G L .

Finally, the limit m→` can be performed by means of th
saddle-point technique, obtaining

f 52max
q,x

K max
m

FvAqm1
x

2
~m22q!1

F~m!

b G L . ~10!

Let us stress once again the important role played by
small symmetry breaking~nonvanishingx) introduced in the
overlap. In fact, if we setx50, choosing in this way a pure
unbroken solution, the extremization with respect toq would
be impossible, since the argument in Eq.~10! would diverge
for q→`. It also should be noticed that at least one of t
maxima with respect toq and x could become a minimum
after performing the limitn→0.

V. FAILURE OF BREAKING

Trying to apply the ordinary approach to spin-glass mo
els, the following step consists in introducing an asymme
in the overlap matrix. Assume now that
9-3
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qa,a85q1
x

bm
da,a81

y

bm
ga,a8 .

Following Parisi parametrization@4–8#, ga,a8 is a matrix
whose entries vanish except inn/ l quadratic blocks ofl 2

elements along the diagonal, where all entries are equal
Notice that we have made explicit once again a factorm21,
otherwise we would have divergent terms. In this case,
maximum has to be taken with respect toq, x, y, and l.

With this ansatz and neglecting terms vanishing in
successive limitsn→0 andm→`, G̃n turns out to be

G̃n5
m2b2

2
qS (

a
maD 2

1
mbx

2 (
a

@~ma!22q#

1
mby

2 (
k

F S (
aPk

maD 2

2ql2G1m(
a

F~ma!,

where the indexk runs over then/ l blocks on the diagonal o
ga,a8 and the sum onaPk goes on thel values ofa corre-
sponding to thekth block.

By means of the parabolic maximum trick, it is possib
to write

Fmby

2 S (
aPk

maD 2G5max
rk

FAmbyrk(
aPk

ma2
rk

2

2 G .

In this way, repeating also the trick in Eq.~9!, we have
factorizedG̃n with respect to then/ l blocks, and, therefore
the limit n→0 can be performed. One gets

f 52 max
q,x,y,l

lim
m→`

1

mb l K lnE )
a

dmamax
r

ĜnL , ~11!

with

Ĝn5(
a

FmbvAqma1
mbx

2
@~ma!22q#1Ambyrma2

r2

2l

2
mby

2
ql1mF~ma!G ,

where now the indexa runs over only a single block, which
corresponds to the scalar variabler, and wherê & means the
average over the normal Gaussianv.

The maxr in Eq. ~11! can be put outside the integratio
This change is allowed and can be understood by the s
argument used after Eq.~8!. As a consequence, the integr
in the preceding expression is factorized among thel replicas
of a block, and reduces to a single integral because of
factor l in the denominator. Moreover, this integral can
computed by means of the saddle-point method in the li
m→`, obtaining
05610
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f 52 max
q,x,y,l

lim
m→`

1

mb K max
r,m

FmbvAqm1
mbx

2
~m22q!

1Ambyrm2
r2

2l
2

mby

2
ql1mF~m!G L .

The maximum with respect tor can be computed, and the
performing the limitm→`, one finally has

f 52 max
q,x,y,l

K max
m

FvAqm1
x1yl

2
~m22q!1mF~m!G L .

Unfortunately, this final result is exactly the same as t
of the unbroken case~10!, the only difference being that th
variablex is substituted byx1yl, which is irrelevant when
the maximum is taken.

This result could imply that the model simply has a co
stant overlap that depends only on the temperature; ot
wise, one should admit that the Parisi ansatz for replica s
metry breaking is inappropriate in this context.

VI. UNDERSTANDING THE REPLICA SYMMETRIC
SOLUTION

The unfortunate result of the replica broken solution
lows us to suppose that the symmetric solution~10! could be
the exact solution of the model. For this reason, we have
study it in detail in order to get more evidence to support t
hypothesis.

The extremization with respect toq, x, and m ~this last
being inside the average and, therefore, for any differentv)
leads to a system of self-consistent equations:

mv5tanh~bAqv1bxmv!,

q5^mv
2 &, ~12!

x5
1

Aq
^vmv&.

This system of equations is solved byq* , x* , andmv* and
the free energy may be written as

f 52x* q* 2
1

b
^F~mv* !&.

Let us stress thatq* corresponds to a maximum with respe
to q while the limit n→0 has transformedx* in a minimum
with respect tox. Notice that Eqs.~12! have been found ou
by De Dominicset al. @9# ~see also@10#! as a first step of a
dynamical solution of the ordinary SK model.

For a givenv, the first of Eqs.~12!, which refer to the
mv , could have a single solution~a maximum! or three dif-
ferent solutions, depending on the temperature. At low te
perature, we have a single solution forv*x/Aq and three
solutions forv&x/Aq. Two of these correspond to a max
mum and the third to a minimum, and this introduces
element of uncertainty. We follow the rule of taking the s
9-4
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lution mv* of the first equation, which corresponds to t
larger of the two maxima for every givenv.

In Fig. 1, we plot the overlapq* and the parameterx* as
functions of the temperatureT[1/b. The spin-glass transi
tion occurs at the critical temperatureTc52, which is the
same as that of the SK model.

In Fig. 2, the free energyf and the entropyS5^F(mv* )&
are plotted as functions of the temperatureT. At T50, the
free energy isf 05A2/p.0.798, which is very close to th
value of the SK symmetric solution. On the contrary, t
entropy simply vanishes atT50 at variance with the SK
case, where the negative entropy proves the unphysica
ture of the solution in that case.

Let us stress that taking the right extreme point with
spect toq, x, andm is a crucial step of the solution, and ou
choice, previously described, could be inappropriate. In f
with the limit n→0, the maximum with respect tox has
become a minimum, and this could also happen for som
the mv . In this case, one should look for the minimum wi
respect to themv ~or for the second maximum!, at least for a
subset ofv. Indeed, at this stage, we are not able to giv
definite answer regarding this point, which should be an
gument for future thorough investigations.

FIG. 1. Overlapq* and parameterx* as functions of tempera
ture T for the symmetric solution. The critical temperature belo
which we have a spin-glass phase (q* .0) turns out to beTc52.

FIG. 2. Free energyf and entropySas functions of temperatur
T for the symmetric solution. In the limitT→0, the solution keeps
a physical meaning since the entropy never becomes negative
05610
a-

-

t,

of

a
r-

VII. CONCLUSIONS

A dynamical approach to our spin-glass model could
of some help in deciding the correct solution. Following E
~5!, the deterministic dynamics ofL magnetizations is

mi~ t11!5tanhF b

AL
(

j
Ji , jmj~ t !G , 1< i<L.

Let us remember that the matrixJ has vanishing diagona
entries Ji ,i50, so that at each step the new value of t
individual magnetizationmi does not depend on its previou
one. The above dynamics takes advantage of peculiar
tures. For instance, at each updating it movesmi in a value
corresponding to a minimum free energy with respect tomi
itself, keeping the other magnetizations fixed. Moreover,
free energy always decreases at each updating of a s
magnetization.

The dynamics causes the system to evolve toward a fi
point, which is a relative minimum of the free energy~not, in
general, a global minimum!. Repeating many times this evo
lution, starting from different initial values for the magnet
zations, allows us to find the global minimum correspond
to the solution of the static spin-glass model. Prelimina
results seem to suggest that the theoretical symmetric s
tion of Sec. VI is slightly different from the dynamic solutio
only for very low temperatures. This does not necessa
imply that the symmetric solution is not the correct one.
fact, in order to avoid finite-size effects, one has to deal w
large lattices~largeL) in numerical simulations, so that th
basin of attraction of the global minimum tends reasona
to become so small that one never uses correct initial co
tions in spite of the large number of attempts.

The above-mentioned features make such a dynamics
magnetization versatile and very fast from a numerical po
of view. Furthermore, not only is it useful for understandi
the associated static model, but it is also interesting in its
In fact, it describes a dynamical system that monotonica
relaxes towards a stable point corresponding to a local m
mum of the free energy.

For this reason, it is the ideal candidate for modeli
some complex systems, such as natural ecosystems, w
each agent or species tries to maximize its own fitness
given context of other active agents. The fitness correspo
to the individual free energy with changed sign~the part of
the free energy that depends on a given magnetizationmi),
and the magnetizationmi corresponds to the species degr
of specialization. The individual agent or species attempt
improve its own condition, and it happens to push the wh
system to maximize the total fitness. This is the very pecu
feature of many real systems that is reproduced by our
namical model, which also exhibits other realistic peculia
ties, such as the fact that the phase space is a landscape
large number of local maxima of the fitness at low tempe
ture. In the case of a catastrophe~even a small change of th
couplings!, the system is no longer in a state of maxim
fitness, and the evolution restarts towards a different lo
9-5
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maximum~a new period of stability in the evolution!, which
is not necessarily higher than the previous one.

In conclusion, this model seems to be very versatile, si
its dynamics could become both a powerful benchmark w
which to test general hypotheses about spin glasses, a
paradigmatic model for evolving complex systems.
05610
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