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Macroscopically frustrated Ising model
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A disordered spin-glass model in which both static and dynamical properties depend on macroscopic mag-
netizations is presented. These magnetizations interact via random couplings and, therefore, the typical
guenched realization of the system exhibits a macroscopic frustration. The model is solved by using a revisited
replica approach, and the broken symmetry solution turns out to coincide with the symmetric solution. Some
dynamical aspects of the model are also discussed, showing how it could be a useful tool for describing some
properties of real systems such as, for example, natural ecosystems or human social systems.
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[. INTRODUCTION could be applied in a more general context to a large class of
models, as will be explained.

Macroscopic frustration can be found in different do- In Sec. IV and Sec. V, respectively, the replica symmetry
mains, from interpersonal relationships to granular matter ogolution and the broken symmetry solution in the manner of
natural ecosystems. All these systems are characterized (Rarisi are derived in detail. The two solutions turn out to
frustrated components with a thermodynamically macro-<Loincide, thus negating the benefits that the Parisi ansatz has
scopic size. In other words, in all these systems, there aré other spin-glass models. _ _ o _
components whose size is comparable with that of the whole N Sec. VI, the symmetric solutions is studied in detail
system and that cause the action of opposite forces. The clalom @ numerical point of view showing that, at variance
sical example is the case of a mAnwho desires to spend with 'the Sherr_r|ngton-K|rkpatncI(SK) model, it keeps its
some time with a dear frien, who, unfortunately, wants to physical meaning even at very low temperature. .
bri L . In Sec. VI, some final remarks are made. In particular,

ring his wife C, who is really detested ba. . . .
. . some dynamical aspects are illustrated. Dynamics could be a

Dozens of examples can be found in nature. Consider th

" fad Itis K that th ts a frustrat érofitable argument for future investigations, especially for
antiers ot a deer. [L1s known that th€y represents a frustratefy possible applications to ecosystems and natural-selection

phenotype. In fact, sexual selection tends to prefer theil:nodeling.
growth in order to increase the chance of reproduction, but
antlers are an obstacle in some situations, such as with a
predator pursuit in a forest, and, therefore, natural-selection
pressure is for their reduction. Let us consider a Hamiltonian whekespins are divided
From a stricter physical point of view, systems that ex-in L sets, each set consisting of exadily=N/L spins. Each
hibit frustration are very commoitsee[1] for a general spin interacts with all other spins, but the coupling does not
view). For a disordered spin system, Toulo(ig¢has intro-  depend on the sites of the spins, but only on the sets of the
duced the definition of frustration for an elementarySpins involved. In other words, two spins of different sets
plaquette of bonds, consisting in the product of the correinteract via a coupling that depends only on the coordinates
sponding couplings. Nevertheless, systems in which frustra@f the two sets of membership. Then, we can speak of cou-
tion appears on macroscopic scales are less ordinary afting between sets rather than between spins. We also as-
have not yet been investigated, as far as we know. sume that spins of the same set do not interact.
In this paper, we present a spin-glass model in which This Hamiltonian can be written as
spins are organized in macroscopic sets, with the correspond- 1
ing macroscopic magnetizations interacting via random cou- Hy L(J,0)=— —— > Ik 1040 (1)
plings. For a typical random realization of the couplings, the ML &1
system is an ensemble of interacting frustrated macroscopic
entities and, therefore, it could be a natural candidate for thwhere J is an NXN symmetric matrix, consisting of

mathematical modeling of phenomena in which macroscopi®locks ofM? entries eachV being the linear size of a block.
frustration plays a central role. All the M2 entries of a given block take the same value and,

Let us briefly sum up the contents of the paper. in particular, the diagonal blocks consist of null entries. The
In Sec. Il, the model is introduced. The model becomedree energy of the system is

self-averaging when the number of components is large, nev- 1

glr;r;erl]eostzs.ome considerations about its finite-size version are fa ()= — ,BM_Lln% exd — BHw (3,01, @
In Sec. Ill, we look for a solution of the model using a

revisited version of the replica trick. This revised versionwhere the sum is intended over all the spin configurations.

Il. THE MODEL
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The thermodynamic limiftN—o can be obtained in two can also be found for finite. Consider, for instancd,=3
different ways sinceN is the product of two variablesN(  with the product of the three couplings with a negative sign.
=LM). In fact, the limitL—c would mean considering a At low temperature(below transition, not vanishing the
system whose properties and characteristics are the same syfstem is degenerated since it has six different pure states
those of the SK mode]3]. On the contrary, the limi with the same free energy and with nontrivial and not all
—oo |eads to a mean-field model with a macroscopic frustraequal values of the three magnetizations involved.
tion. The self-average properties are obtained by also per- WhenL increases, frustration increases, as does the num-
forming the limitL — < after the limitM —cc. Nevertheless, ber of pure states corresponding to the same free energy. We
non-self-averaging macroscopic frustration is also exhibitedhope to find in this way an interesting spin-glass model with

for finite L, as we will show later with an example. new peculiarities.
We thus perform the limiM — oo, keepingL finite. After
some algebra, the free energy reads Ill. REPLICA TRICK REVISITED

1 In order to perform the limit. —o, we need to compute
fL(d)=- ﬁmr?d“(\],m), max,I"(J,m). We will accomplish this task by means of the
replica trick with a slight but crucial variant. Let us stress
wherem=(m,, ...,m,), having defined théth set magne- from the beginning that this way of applying the replica trick
tizationm; as is not restricted to our model, but it is more general and, in
principle, could be of some help in solving many other mod-
els with macroscopic variables. In fact, what we propose

mizwllim M ke% Set‘fkv here is a useful technique for computing quantities of the
type max,I'(J,m), i.e., an average whose argument is a
and where maximum over an expression that depends on random vari-

ables(J) and on variables to be maximizethy.
It is easy to check that

B
L i>j i 1 n
oo . ) ) max(J,m)= lim lim—In fdmexp(,uF(J,m)) ,
The indicesi andj run over the spin sets, antis now a m p—oon—oMN

symmetricL X L matrix, obtained from the matrix in Eql) (6)
substituting each block with a single entry;,; being the

value of the coupling connecting a spin of setith a spin of  wheredm=1II,dm; . In fact, after having performed the limit
setj, with J; ;=0Vi. Furthermore®(m;) represents the en- n—0 as in ordinary replica trick on the right-hand side of

tropic term of spin set, Eq. (6), the saddle-point method allows us to compute the
limit w—o0, giving equality(6). The variablex here is only
o(m)=— 1+m r‘1+mi o 1-m Ir‘l_mi an auxiliary one.
! 2 2 2 2 - Making explicit then replicas, the average on the right-

hand side of Eq(6) can be written as
Let us suppose that the nondiagonal elements afe

independent, identically distributed random quenched vari-
ables. For the sake of simplicity, we restrict ourselves to
considering normal Gaussian variables with vanishing aver-

f dm exp(,ul“(\],m))}n

age and unitary variance. Our aim is to compute the L .
qguenched free energy =j 1;[ dm“expG,(u,m*, ... ,m",

. ol — . i

f=1limf (J)=— lim——max(J,m), (4)  having defined

L—oo L*}OOBL m
where the last equality is due to the self-averaging property Gh(w,m}, ... mMN=In expz ul'(J,m*),
of the free energy, which holds in the largdimit. The max @
in Eq. (4) is reached fom* =(m¥, ... m¥), which obeys _ _ _ _
the following L self-consistent equations: where the indexx runs over then replicas. Finally, this leads

to the following expression for the free enerfjy

mi*=tank{ﬁz Jimr|, 1<i<L. (5) |
JLT O f=—Iim lim lim———
Lﬂxﬂﬂwnﬂoﬂl‘lan
We consider the largk-limit, because we have in mind a
system with many macroscopic frustrated components, nev- ij H dm®expG,(x,mt, ... m"). @)
ertheless the glassy characteristiexcept self-averaging @
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In our case, keeping in mind Eq3), we can give an from the other entries, otherwise one would have diverging
explicit expression foG, . For the sake of simplicity, we do terms in the limitu— . This fact implies that overlap turns
not write in the following the argument d&,. After have out to be a constant only once the limit—c has been
taking the averages over the Gaussiavariables, and after performed. With this choice, one gets
some algebra, one has

~ | M ,8 mBX
22 L Gn= (2 m*| +—— 2 [(m)?~q]
Go=" 2, | 2 m'm" | +pu2 O(mf) "
wherea anda’ run over the replicas, and where terms not +’“% P(m

diverging withL have been neglected since they would dis-

appear in the successive linit—%. By means of the para- where terms that vanish in the two limits—~0 and u— o

bolic maximum trick, the above expression can be rewritterhave been neglected. By means of the standard Gaussian
as trick, we have

w?p? L, u2p? 2
an{max} 5 > (qm,z mem® —Eqw,) exp{ al > m“) }=<exr{ wBw g, m* > (9)
do,a’ a,a’ a «
D N where the averagé is on an independent normal Gaussian
+“i’a P(mp) |, variablew. The above equality allows for writing

where{q, .} is annXn matrix, which represents from a expén=<H exp( wBoNgme+ '“_'BX[(ma)z_q]
physical point of view the overlap between replicas in spin- a 2
glass theory.
Now the integral in Eq(7) can be fully factorized among +Mq)(ma)) >
the different spin sets, individuated by the indeX his fact
allows us to perform the limit — oo, which gives the final

expression for the free energy in the replica context: Notice that the argument inside thpaverage in the pre-
ceding expression is fully factorized among theeplicas.

For this reason, the integral in E@) becomes thath power
f=- max lim I|mB In H dm*expG, (8  of 4 single integral, and therefore the limit-~0 can be
ol tpmEn =0 performed:
with 1
_ PP C 1, f=—maxI|m—B<Inf dmexp{,u,ﬁw\/—m-i— (m -q)
Gi=— 2 (qa,afm“m“ —Eqa,a,)wi ®(me), axn
where nowm?, ... m" aren replicas of a scalar magnetiza- +’“q>(m)}>'

tion. Notice that interchange of the position between the o
max, , and the integration is allowed since in the lirhit ~ Finally, the limit . — can be performed by means of the

—c0 this maximum corresponds to a saddle-point approxi- saddle-point technique, obtaining

mation of an integration with respect to the same variables
X d(m)
max w~/gm-+ E(m —q)+ . (10
X

{qa,a’}' f=—m
a, m B

IV. REPLICA SYMMETRIC SOLUTION . .
Let us stress once again the important role played by the

In order to find a solution, i.e., to compute the quenchedgsmall symmetry breakingnonvanishing) introduced in the
free energy(8), we start by trying the usual symmetry un- overlap. In fact, if we sex=0, choosing in this way a pure
broken strategy. Let us stress that the diagonal terms of mambroken solution, the extremization with respect|twould
trix g are relevant for this model, at variance with the cel-be impossible, since the argument in EtQ) would diverge
ebrated replica solution of the SK mod@]. Therefore, in  for g—c. It also should be noticed that at least one of the
spite of assuming that the diagonal terms vanish as in thgaxima with respect tg and x could become a minimum

symmetry-unbroken solution of SK, we assume after performing the limih—0.
X
Qaar =9+ m(sw, , V. FAILURE OF BREAKING

Trying to apply the ordinary approach to spin-glass mod-
whered, ., is the Kronecker delta. Notice that elements onels, the following step consists in introducing an asymmetry
the d|agonal differ only for a quantity of the order pf ! in the overlap matrix. Assume now that
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X 1 X
Ouer =0+ mémaﬁ%ya,a,. f=-— ma>f lim _B< a){,u,,@w\/_m+ i(m -Qq)
A%,y p—eott
Following Parisi parametrizatiofd—8|, vy, . is a matrix + /Mﬁypm—p——ﬂ—'&/qub(m)} _
whose entries vanish except il quadratic blocks of? 2 2

elements along the diagonal, where all entries are equal to 1.

Notice that we have made explicit once again a fagtot, =~ The maximum with respect tp can be computed, and then
otherwise we would have divergent terms. In this case, th@erforming the limitu— o, one finally has

maximum has to be taken with respectqox, y, andl.

With this ansatz and neglecting terms vanishing in the f= — max ma{w\/aer X+y|(m2—q)+,u<D(m)}
successive limitys—0 andu— o, G turns out to be axyl\ m 2

Unfortunately, this final result is exactly the same as that
'“_'BX E [(m%)2-q] of the unbroken casgl0), the only difference being that the
2 42 variablex is substituted by +yl, which is irrelevant when
the maximum is taken.
+,U«E d(m®), This result could imply that the model simply has a con-
a stant overlap that depends only on the temperature; other-
wise, one should admit that the Parisi ansatz for replica sym-

where the index runs over the/I blocks on the diagonal of Metry breaking is inappropriate in this context.
Ya,or @nd the sum o e k goes on thd values ofa corre-

2 n2 2
én='u2B (2 m*| +

a

3w

k aek

sponding to thekth block. VI. UNDERSTANDING THE REPLICA SYMMETRIC
By means of the parabolic maximum trick, it is possible SOLUTION
to write

The unfortunate result of the replica broken solution al-
lows us to suppose that the symmetric solutid@) could be
the exact solution of the model. For this reason, we have to
study it in detail in order to get more evidence to support this
hypothesis.

The extremization with respect @@ x, and m (this last
In this way, repeating also the trick in E¢), we have peing inside the average and, therefore, for any diffesent
factorizedG,, with respect to the/| blocks, and, therefore, leads to a system of self-consistent equations:
the limit n—0 can be performed. One gets

m,,=tanh( 8\qo+ Bxm,),

2

2
ﬂ( Ek m“) }:ma{ Wﬁypkzk me— %
ae Pk ae

f=— max I|m—<lnf IT dme ma>G > (11) g=(m), (12)
x| p—eeht
_ 1
with X= \/—a<wmw>.

p? This system of equations is solved by, x*, andm* and
G,=2, {/\Lﬂ(v\/_maﬁ- —[ m®)2—q]+ VuBypm*— the free energy may be written as

1
— * ~* *
—M—ﬁyql—i-,ufb(m“)} f=-x"q E(q)(mw»-
Let us stress thaj* corresponds to a maximum with respect
where now the indexx runs over only a single block, which to g while the limitn—0 has transforme&* in a minimum
corresponds to the scalar varialpleand wherg) means the ~ with respect tax. Notice that Eqs(12) have been found out
average over the normal Gaussian by De Dominicset al.[9] (see alsd10]) as a first step of a
The may in Eq. (11) can be put outside the integration. dynamical solution of the ordinary SK model.
This change is allowed and can be understood by the same For a givenw, the first of Eqs.(12), which refer to the
argument used after E¢8). As a consequence, the integral m,,, could have a single solutio@a maximum or three dif-
in the preceding expression is factorized amond tieplicas ~ ferent solutions, depending on the temperature. At low tem-
of a block, and reduces to a single integral because of thperature, we have a single solution fo=x/\/q and three
factor | in the denominator. Moreover, this integral can besolutions foro=<x/+/q. Two of these correspond to a maxi-
computed by means of the saddle-point method in the limimum and the third to a minimum, and this introduces an
pu—0, obtaining element of uncertainty. We follow the rule of taking the so-
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1 - 1 VIl. CONCLUSIONS
Ovetlap . A dynamical approach to our spin-glass model could be
| of some help in deciding the correct solution. Following Eq.
e x* (5), the deterministic dynamics &f magnetizations is
05 00

, I<i<L.

B
mi(t+ 1):tan}‘|:ﬁ ; J,'ij(t)

0.8

Let us remember that the matrikhas vanishing diagonal
0 A os / s > entriesJ; =0, so that at each step the new value of the
r individual magnetizatiom; does not depend on its previous

FIG. 1. Overlapg* and parametex* as functions of tempera- ©ON€. The above dynamics takes advantage of peculiar fea-

ture T for the symmetric solution. The critical temperature below tures. For instance, at each updating it momgsn a value

which we have a spin-glass phasg* 0) turns out to beT,=2.  corresponding to a minimum free energy with respeafo
itself, keeping the other magnetizations fixed. Moreover, the

lution m7 of the first equation, which corresponds to thefree energy always decreases at each updating of a single
larger of the two maxima for every given. magnetization.

In Fig. 1, we plot the overlag* and the parameter* as The dynamics causes the system to evolve toward a fixed
functions of the temperaturé=1/8. The spin-glass transi- point, which is a relative minimum of the free energt, in
tion occurs at the critical temperatuiig=2, which is the general, a global minimumRepeating many times this evo-
same as that of the SK model. lution, starting from different initial values for the magneti-

In Fig. 2, the free energffand the entropys=(d(m})) zations, allows us to find the global minimum corresponding
are plotted as functions of the temperatliieAt T=0, the to the solution of the static spin-glass model. Preliminary
free energy isfo=\/2/7=0.798, which is very close to the results seem to suggest that the theoretical symmetric solu-
value of the SK symmetric solution. On the contrary, thetion of Sec. Vlis slightly different from the dynamic solution
entropy simply vanishes &=0 at variance with the SK only for very low temperatures. This does not necessarily
case, where the negative entropy proves the unphysical némply that the symmetric solution is not the correct one. In
ture of the solution in that case. fact, in order to avoid finite-size effects, one has to deal with

Let us stress that taking the right extreme point with re-large lattices(largeL) in numerical simulations, so that the
spect tog, x, andm is a crucial step of the solution, and our basin of attraction of the global minimum tends reasonably
choice, previously described, could be inappropriate. In fact{o become so small that one never uses correct initial condi-
with the limit n—0, the maximum with respect ts has  tions in spite of the large number of attempts.
become a minimum, and this could also happen for some of The above-mentioned features make such a dynamics for
them,,. In this case, one should look for the minimum with magnetization versatile and very fast from a numerical point
respect to then,, (or for the second maximumat least for a  of view. Furthermore, not only is it useful for understanding
subset ofw. Indeed, at this stage, we are not able to give &he associated static model, but it is also interesting in itself.

definite answer regarding this point, which should be an arln fact, it describes a dynamical system that monotonically
gument for future thorough investigations. relaxes towards a stable point corresponding to a local mini-

mum of the free energy.
For this reason, it is the ideal candidate for modeling
06 some complex systems, such as natural ecosystems, where
each agent or species tries to maximize its own fitness in a
given context of other active agents. The fitness corresponds
to the individual free energy with changed sighe part of
the free energy that depends on a given magnetization
and the magnetizatiom; corresponds to the species degree
of specialization. The individual agent or species attempts to
-0.2 improve its own condition, and it happens to push the whole
system to maximize the total fitness. This is the very peculiar
feature of many real systems that is reproduced by our dy-
namical model, which also exhibits other realistic peculiari-
o 0.5 1 s 2 ties, such as the fact that the phase space is a landscape of a
large number of local maxima of the fithess at low tempera-
FIG. 2. Free energfand entropyS as functions of temperature ture. In the case of a catastropfeen a small change of the
T for the symmetric solution. In the limif—0, the solution keeps couplings, the system is no longer in a state of maximal
a physical meaning since the entropy never becomes negative. fitness, and the evolution restarts towards a different local

-0.8

Free energy
Entropy

0.4

-1.2 4
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